Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239626

RESUMEN

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

2.
J Neuropathol Exp Neurol ; 82(11): 921-933, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37740942

RESUMEN

Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Neoplasias Encefálicas/patología , Células Endoteliales/metabolismo , Encéfalo/patología , Astrocitoma/patología , Mutación/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Proliferación Celular , Microambiente Tumoral
3.
Int J Cancer ; 153(12): 2068-2081, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602921

RESUMEN

Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Ratones , Animales , Transducción de Señal , Movimiento Celular , Neoplasias Colorrectales/genética , Proteínas de la Membrana , Proteínas ADAM/genética
4.
Neuro Oncol ; 25(10): 1731-1749, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37279174

RESUMEN

In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Patología Molecular , Mutación , Glioma/diagnóstico , Glioma/genética , Glioma/patología , Organización Mundial de la Salud
5.
Neuro Oncol ; 25(2): 248-260, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35608632

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resistance is universal. METHODS: We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic targeting. RESULTS: We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy of bevacizumab in preclinical GBM models in vivo. CONCLUSION: PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic paradigm.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfofructoquinasa-1 , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
6.
J Neurosurg ; 138(5): 1302-1312, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115056

RESUMEN

OBJECTIVE: Meningioma is the most common primary intracranial neoplasm. Only 1%-3% of meningiomas are malignant according to the 2016 WHO criteria (WHO grade III). High-grade meningiomas present specific gene expression signatures indicating aggressive growth or recurrence. However, changes in gene expression and in neuroinflammatory gene expression signatures in WHO grade III meningiomas and during progression from WHO grade I or II to grade III are unknown. METHODS: The authors used a NanoString targeted gene expression panel with focus on 787 genes relevant in meningioma pathology and neuroinflammatory pathways to investigate patients with grade III meningiomas treated at Rigshospitalet from 2000 to 2020 (n = 51). A temporal dimension was added to the investigation by including samples from patients' earlier grade I and II meningiomas and grade III recurrences (n = 139 meningiomas). The authors investigated changes in neuroinflammatory gene expression signatures in 1) grade I meningiomas that later transformed into grade III meningiomas, and 2) grade III meningiomas compared with nonrecurrent grade I meningiomas. RESULTS: The authors' data indicate that FOXM1, TOP2A, BIRC5, and MYBL2 were enriched and the HOTAIR regulatory pathway was enriched in grade III meningiomas compared with nonrecurrent grade I meningiomas. They discovered a separation of malignant and benign meningiomas based only on genes involved in microglia regulation with enrichment of P2RY12 in grade I compared with grade III meningiomas. Interestingly, FOXM1 was upregulated in premalignant grade I meningioma years before the grade III transformation. CONCLUSIONS: The authors found gene expression changes in low-grade meningiomas that predated histological transformation to grade III meningiomas. Neuroinflammation genes distinguished grade III from grade I meningiomas.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/patología , Neoplasias Meníngeas/patología , Perfilación de la Expresión Génica , Recurrencia Local de Neoplasia/patología
7.
Neuropathol Appl Neurobiol ; 48(2): e12772, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713474

RESUMEN

AIMS: Glioblastomas are heterogeneous tumours with a rich tumour microenvironment particularly comprised of tumour-associated microglia/macrophages (TAMs), but also containing a population of dedifferentiated/stem-like glioblastoma cells. Both cell populations contribute to tumour aggressiveness and immune evasion through the actions of various signalling molecules. The scavenger and pattern recognition receptor CD204 is associated with a pro-tumourigenic phenotype of TAMs and has a negative prognostic value. Our objective was to investigate the possible interaction between TAMs and dedifferentiated glioblastoma cells and characterise the myeloid phenotype of CD204-enriched glioblastomas. METHODS: Double immunohistochemistry and cell counting was performed on eight glioblastoma samples to estimate the expression and interaction level between dedifferentiated/stem-like tumour cells and TAMs. Using the NanoString technology, myeloid transcriptome profiling was performed on 46 glioblastomas, which had been selected based on their protein expression levels of CD204 and ionised calcium-binding adaptor molecule-1 (IBA1). The results were validated by immunohistochemistry and in silico gene expression analyses. RESULTS: TAMs especially CD204+ TAMs accumulated in perivascular and perinecrotic niches in close proximity to podoplanin+ glioblastoma cells. Gene profiling revealed that CD204-enriched glioblastoma has a unique signature with upregulation of genes related to hypoxia, angiogenesis and invasion, including interleukin-6. The gene signature favoured a poor prognosis in patients with glioblastoma. CONCLUSIONS: This is the first study to characterise the role of CD204 in the myeloid microenvironment of glioblastoma. Our results support the unfavourable prognostic impact of CD204 and suggest that CD204 and interleukin-6 could serve as targets for re-education of TAMs and potentiation of current anti-glioma therapy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/patología , Humanos , Inmunohistoquímica , Inflamación/patología , Macrófagos/patología , Masculino , Microglía/patología , Persona de Mediana Edad , Pronóstico , Microambiente Tumoral
8.
Acta Neurochir (Wien) ; 164(2): 451-457, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33721109

RESUMEN

BACKGROUND: Sodium fluorescein (fluorescein) crosses a disrupted blood-brain barrier similarly to gadolinium contrast in contrast-enhancing cerebral tumors. When exposed to light with 560 nm wavelength during surgery, fluorescein emits a yellow-green fluorescent light that can be visualized through an operating microscope equipped with an appropriate emission filter. The distribution of the fluorescence correlates with the contrast on a gadolinium contrast-enhanced MRI. OBJECTIVE: The objective of this single-center retrospective study was to investigate if the use of fluorescein would increase the extent of resection and to examine if fluorescein guided resection influences postoperative neurological status. METHODS: During the study period from August 2014 to August 2018, 117 patients were operated for cerebral metastases. Of these, 56 operations were guided by fluorescein and 61 by traditional white light. All patients had an early postoperative MRI within 72 h after surgery. RESULTS: The use of fluorescein increased the extent of resection in patients with cerebral metastases. The use of fluorescein was not associated with increased postoperative sequelae or neurological damage regardless of underlying primary cancer. CONCLUSION: Fluorescein is a helpful supplement in the neurosurgical treatment of cerebral metastases.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Supratentoriales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Fluoresceína , Colorantes Fluorescentes , Humanos , Procedimientos Neuroquirúrgicos , Estudios Retrospectivos , Neoplasias Supratentoriales/cirugía
9.
J Neuropathol Exp Neurol ; 81(1): 54-60, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34875075

RESUMEN

Patients with IDH-wildtype glioblastoma (GBM) generally have a poor prognosis. However, there is an increasing need of novel robust biomarkers in the daily clinico-pathological setting to identify and support treatment in patients who become long-time survivors. Jumonji domain-containing protein 6 (JMJD6) is involved in epigenetic regulation of demethylation of histones and has been associated with GBM aggressiveness. We investigated the expression and prognostic potential of JMJD6 tumor fraction score in 184 IDH-wildtype GBMs. Whole-slides were double-stained with an antibody against JMJD6 and an exclusion-cocktail consisting of 4 antibodies (CD31, SMA, CD45, and Iba-1), enabling evaluation of tumor cells only. Stainings were quantified with a combined software- and scoring-based approach. For comparison, IDH-mutated WHO grade II, III and IV astrocytic gliomas were also stained, and the JMJD6 tumor fraction score increased with increasing WHO grade, although not significantly. In multivariate analysis including age, gender, performance status and post-surgical treatment high JMJD6 tumor fraction score was associated with longer overall survival in IDH-wildtype GBMs (p = 0.03), but the effect disappeared when MGMT promoter status was included (p = 0.34). We conclude that JMJD6 is highly expressed in IDH-wildtype GBM but it has no independent prognostic value.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/patología , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/genética , Femenino , Glioblastoma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Histona Demetilasas con Dominio de Jumonji/análisis , Masculino , Persona de Mediana Edad , Pronóstico
10.
Sci Rep ; 11(1): 17918, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504133

RESUMEN

Survival of glioblastoma patients varies and prognostic markers are important in the clinical setting. With digital pathology and improved immunohistochemical multiplexing becoming a part of daily diagnostics, we investigated the prognostic value of the Ki-67 labelling index (LI) in glioblastomas more precisely than previously by excluding proliferation in non-tumor cells from the analysis. We investigated the Ki-67 LI in a well-annotated population-based glioblastoma patient cohort (178 IDH-wildtype, 3 IDH-mutated). Ki-67 was identified in full tumor sections with automated digital image analysis and the contribution from non-tumor cells was excluded using quantitative double-immunohistochemistry. For comparison of the Ki-67 LI between WHO grades (II-IV), 9 IDH-mutated diffuse astrocytomas and 9 IDH-mutated anaplastic astrocytomas were stained. Median Ki-67 LI increased with increasing WHO grade (median 2.7%, 6.4% and 27.5%). There was no difference in median Ki-67 LI between IDH-mutated and IDH-wildtype glioblastomas (p = 0.9) and Ki-67 LI was not associated with survival in glioblastomas in neither univariate (p = 0.9) nor multivariate analysis including MGMT promoter methylation status and excluding IDH-mutated glioblastomas (p = 0.2). Ki-67 may be of value in the differential diagnostic setting, but it must not be over-interpreted in the clinico-pathological context.


Asunto(s)
Antígeno Ki-67/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Estudios de Cohortes , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico
11.
Acta Neuropathol Commun ; 9(1): 101, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059134

RESUMEN

Glioblastoma (GBM) displays marked cellular and metabolic heterogeneity that varies among cellular microenvironments within a tumor. Metabolic targeting has long been advocated as a therapy against many tumors including GBM, but how lipid metabolism is altered to suit different microenvironmental conditions and whether cancer stem cells (CSCs) have altered lipid metabolism are outstanding questions in the field. We interrogated gene expression in separate microenvironments of GBM organoid models that mimic the transition between nutrient-rich and nutrient-poor pseudopalisading/perinecrotic tumor zones using spatial-capture RNA-sequencing. We revealed a striking difference in lipid processing gene expression and total lipid content between diverse cell populations from the same patient, with lipid enrichment in hypoxic organoid cores and also in perinecrotic and pseudopalisading regions of primary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-associated (HILPDA) gene expression in organoid cores and pseudopalisading regions of clinical GBM specimens, but not lower-grade brain tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell activity. Targeted lipidomic analysis of multiple patient-derived models revealed a significant shift in lipid metabolism between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase (FADS1/2) expression which was essential to maintain CSC viability and self-renewal. Our data demonstrate spatially and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitulated in laboratory models, and may represent therapeutic targets for GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Metabolismo de los Lípidos/fisiología , Células Madre Neoplásicas/metabolismo , Organoides/metabolismo , Microambiente Tumoral/fisiología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/patología , Organoides/patología , Células Tumorales Cultivadas
12.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809258

RESUMEN

Background: Due to the solely subjective histopathological assessment, the WHO 2016 classification of human meningiomas is subject to interobserver variation. Consequently, the need for more reliable and objective markers are highly needed. The aim of this pilot study was to apply genome-wide DNA methylation analysis on a series of atypical meningiomas to evaluate the practical utility of this approach, examine whether prognostic subclasses are achieved and investigate whether there is an association between the methylation subclasses with poor prognosis and time to recurrence. NF1/2 mutation analyses were also performed to explore the prognostic value of such mutations in these atypical meningiomas. Methods: Twenty intracranial WHO grade II atypical meningiomas from adult patients were included. They consisted of 10 cases with recurrence (group I), and 10 cases without recurrence (group II). The formalin-fixed and paraffin-embedded tissues underwent standardized genome-wide DNA methylation analysis, and the profiles were matched with the reference library and tumor classifier from Heidelberg. NF1/2 somatic mutation analyses were performed using the CNSv1panel from Düsseldorf. Results: Eighteen out of 20 cases matched to the meningioma class using the common brain tumor classifier (v11b4). Four of these cases matched to a methylation subclass related to a prognostic subgroup based on a cut-off of 0.9. NF2 mutations were detected in 55% of cases across both groups, and the most prominent copy number alterations were chromosomal losses of 22q, 1p and 14q. No significant NF1 mutations were identified. Conclusions: Genome-wide DNA methylation profiling represents a useful tool in the diagnostics of meningiomas, however, methodological adjustments need to be addressed.

13.
Brain Pathol ; 31(3): e12921, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33244787

RESUMEN

Diffuse gliomas are aggressive brain tumors that respond poorly to immunotherapy including immune checkpoint inhibition. This resistance may arise from an immunocompromised microenvironment and deficient immune recognition of tumor cells because of low mutational burden. The most prominent genetic alterations in diffuse glioma are mutations in the isocitrate dehydrogenase (IDH) genes that generate the immunosuppressive oncometabolite d-2-hydroxyglutarate. Our objective was to explore the association between IDH mutation and presence of cells expressing the immune checkpoint proteins galectin-9 and/or T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Astrocytic gliomas of World Health Organization (WHO) grades III or IV (36 IDH-mutant and 36 IDH-wild-type) from 72 patients were included in this study. A novel multiplex chromogenic immunohistochemistry panel was applied using antibodies against galectin-9, TIM-3, and the oligodendrocyte transcription factor 2 (OLIG2). Validation studies were performed using data from The Cancer Genome Atlas (TCGA) project. IDH mutation was associated with decreased levels of TIM-3+ cells (p < 0.05). No significant association was found between galectin-9 and IDH status (p = 0.10). Most TIM-3+ and galectin-9+ cells resembled microglia/macrophages, and very few TIM-3+ and/or galectin-9+ cells co-expressed OLIG2. The percentage of TIM-3+ T cells was generally low, however, IDH-mutant tumors contained significantly fewer TIM-3+ T cells (p < 0.01) and had a lower interaction rate between TIM-3+ T cells and galectin-9+ microglia/macrophages (p < 0.05). TCGA data confirmed lower TIM-3 mRNA expression in IDH-mutant compared to IDH-wild-type astrocytic gliomas (p = 0.013). Our results show that IDH mutation is associated with diminished levels of TIM-3+ cells and fewer interactions between TIM-3+ T cells and galectin-9+ microglia/macrophages, suggesting reduced activity of the galectin-9/TIM-3 immune checkpoint pathway in IDH-mutant astrocytic gliomas.


Asunto(s)
Astrocitoma/patología , Receptor 2 Celular del Virus de la Hepatitis A/genética , Isocitrato Deshidrogenasa/genética , Linfoma Folicular/patología , Mutación/genética , Astrocitoma/clasificación , Astrocitoma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Humanos , Linfoma Folicular/genética , Linfocitos T/patología , Microambiente Tumoral
14.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33351787

RESUMEN

Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with coenriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.


Asunto(s)
División Celular Asimétrica , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Autorrenovación de las Células , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/antagonistas & inhibidores , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
15.
Acta Neuropathol Commun ; 8(1): 81, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503645

RESUMEN

Preclinical and clinical proof-of-concept studies have suggested the effectiveness of pharmacological modulation of inflammatory cytokines in ischemic stroke. Experimental evidence shows that targeting tumor necrosis factor (TNF) and interleukin (IL)-1 holds promise, and these cytokines are considered prime targets in the development of new stroke therapies. So far, however, information on the cellular expression of TNF and IL-1 in the human ischemic brain is sparse.We studied 14 cases of human post-mortem ischemic stroke, representing 21 specimens of infarcts aged 1 to > 8 days. We characterized glial and leukocyte reactions in the infarct/peri-infarct (I/PI) and normal-appearing tissue (NAT) and the cellular location of TNF, TNF receptor (TNFR)1 and TNFR2, IL-1α, IL-1ß, and IL-1 receptor antagonist (IL-1Ra). The immunohistochemically stained tissue sections received a score reflecting the number of immunoreactive cells and the intensity of the immunoreactivity (IR) in individual cells where 0 = no immunoreactive cells, 1 = many intermediately to strongly immunoreactive cells, and 2 = numerous and intensively immunoreactive cells. Additionally, we measured blood TNF, TNFR, and IL-1 levels in surviving ischemic stroke patients within the first 8 h and again at 72 h after symptom onset and compared levels to healthy controls.We observed IL-1α and IL-1ß IR in neurons, glia, and macrophages in all specimens. IL-1Ra IR was found in glia, in addition to macrophages. TNF IR was initially found in neurons located in I/PI and NAT but increased in glia in older infarcts. TNF IR increased in macrophages in all specimens. TNFR1 IR was found in neurons and glia and macrophages, while TNFR2 was expressed only by glia in I/PI and NAT, and by macrophages in I/PI. Our results suggest that TNF and IL-1 are expressed by subsets of cells and that TNFR2 is expressed in areas with increased astrocytic reactivity. In ischemic stroke patients, we demonstrate that plasma TNFR1 and TNFR2 levels increased in the acute phase after symptom onset compared to healthy controls, whereas TNF, IL-1α, IL-1ß, and IL-1Ra did not change.Our findings of increased brain cytokines and plasma TNFR1 and TNFR2 support the hypothesis that targeting post-stroke inflammation could be a promising add-on therapy in ischemic stroke patients.


Asunto(s)
Encéfalo/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Accidente Cerebrovascular Isquémico/sangre , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Receptores Tipo II del Factor de Necrosis Tumoral/sangre
16.
J Neurosurg ; : 1-8, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31585425

RESUMEN

OBJECTIVE: Maximal safe resection is an important surgical goal in the treatment for high-grade gliomas. Fluorescent dyes help the surgeon to distinguish malignant tissue from healthy. The aims of this study were 1) to compare the 2 fluorescent dyes 5-aminolevulinic acid (5-ALA) and sodium fluorescein (fluorescein) regarding extent of resection, progression-free survival, and overall survival; and 2) to assess the influence of other risk factors on clinical outcome and screen for potential disadvantages of the dyes. METHODS: A total of 209 patients with high-grade gliomas were included in this retrospective study. Resections were performed in the period from 2012 to 2017 using 5-ALA or fluorescein. Extent of resection was assessed as the difference in tumor volume between early postoperative and preoperative MRI studies. Tumor progression-free survival and overall survival were analyzed using an adjusted Cox proportional hazards model. RESULTS: One hundred fifty-eight patients were operated on with 5-ALA and 51 with fluorescein. The median duration of follow-up was 46.7 and 21.2 months, respectively. Covariables were evenly distributed. There was no statistically significant difference in volumetrically assessed median extent of resection (96.9% for 5-ALA vs 97.4% for fluorescein, p = 0.46) or the percentage of patients with residual tumor volume less than 0.175 cm3 (29.5% for 5-ALA vs 36.2% for fluorescein, p = 0.39). The median overall survival was 14.8 months for the 5-ALA group and 19.7 months for the fluorescein group (p = 0.06). The median adjusted progression-free survival was 8.7 months for the 5-ALA group and 9.2 months for the fluorescein group (p = 0.03). CONCLUSIONS: Fluorescein can be used as a viable alternative to 5-ALA for intraoperative fluorescent guidance in brain tumor surgery. Comparative, prospective, and randomized studies are much needed.

17.
Clin Neurol Neurosurg ; 181: 28-32, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981151

RESUMEN

OBJECTIVE: The primary objective of this retrospective study was to evaluate the diagnostic yield and morbidity/mortality associated with frameless stereotactic neuronavigated intracranial biopsies with and without the use of fluorescein. PATIENTS AND METHODS: Patient cases from January 2007 to December 2017 were identified using the ICD-10 procedure code AAG00. Relevant clinical data, including histological diagnosis, were collected retrospectively from the electronic patient charts and independently reviewed by two authors. RESULTS: 111 biopsies obtained from 103 patients were identified. Of these, 109 biopsies yielded a diagnosis and resulted in a diagnostic yield of 98.2%. Fluorescein was used in 13 biopsies (11.7%). Twelve patients (10.8%) experienced postoperative complications, and the mortality attributed to the surgery was 1.8%. In 12.6% of cases, the biopsies showed inflammation or nonspecific reactive changes. No statistically significant differences were observed in diagnostic yield or number and severity of complications according to whether intraoperative histological examination was used or not. CONCLUSION: Although direct comparisons between studies are difficult due to lack of consensus about the definition of diagnostic yield, the present study reports a similar diagnostic yield to other studies. Intraoperative histopathological analysis appeared to give little extra benefit.


Asunto(s)
Biopsia , Neoplasias Encefálicas/cirugía , Neuronavegación , Complicaciones Posoperatorias/patología , Adulto , Anciano , Biopsia/métodos , Neoplasias Encefálicas/patología , Femenino , Fluorescencia , Humanos , Masculino , Persona de Mediana Edad , Morbilidad , Neuronavegación/métodos , Complicaciones Posoperatorias/etiología , Técnicas Estereotáxicas
18.
Ugeskr Laeger ; 181(6)2019 Feb 04.
Artículo en Danés | MEDLINE | ID: mdl-30729918

RESUMEN

Diagnostics of tumours of the central nervous system has for decades been based entirely on microscopy. A con-siderable degree of diagnostic interobserver variability has been observed due to imprecise histological criteria. In the revised WHO classification for central nervous system tumours from 2016, several diagnoses are now defined by both histological and molecular features and constitute "integrated diagnoses". The development based on new technologies like next-generation sequencing and DNA methylation profiling is discussed in this review as well as its implication for daily diagnostics and the patient.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Glioma/diagnóstico , Glioma/genética , Humanos
19.
Eur J Neurosci ; 49(4): 497-509, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471165

RESUMEN

Parkinson's disease is a neurodegenerative disease resulting in degeneration of midbrain dopaminergic neurons. Exploratory studies using human foetal tissue or predifferentiated stem cells have suggested that intracerebral transplantation of dopaminergic precursor cells may become an effective treatment for patients with Parkinson's disease. However, strategies for dopaminergic stem cell differentiation vary widely in efficiency, and better methods still need to be developed. Hypoxia Inducible Factor 1 (HIF-1) is a transcription factor involved in the regulation of genes important for cellular adaption to hypoxia and low glucose supply. HIF-1 is to a large degree regulated by the availability of oxygen as in its presence, the subunit HIF-1α is degraded by HIF prolyl hydroxylase enzymes (HPHs). Stabilization of HIF-1α through inhibition of HPHs has been shown to increase dopaminergic differentiation of stem cells and to protect dopaminergic neurons against neurotoxins. This study investigated the effects of noncompetitive (FG-0041) and competitive (Compound A and JNJ-42041935) HIF-1α stabilizing compounds on the dopaminergic differentiation of human neural stem cells. Treatment with all HPH inhibitors at high oxygen tension (20%) resulted in HIF-1α stabilization as assessed by immunocytochemistry for HIF-1α and detection of increased levels of vascular endothelial growth factor in the conditioned culture medium. Following 10 days of HIF-1α stabilization, the cultures displayed a slightly reduced proliferative activity and significantly increased relative levels of tyrosine hydroxylase-positive dopaminergic neurons. In conclusion, HIF-1α stabilization may represent a promising strategy for the generation of dopaminergic neurons intended for use in experimental in vitro studies and cell replacement therapies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Inhibidores de Prolil-Hidroxilasa/farmacología , Bencimidazoles/farmacología , Línea Celular , Feto , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Mesencéfalo/citología , Enfermedad de Parkinson , Fenantrolinas/farmacología , Pirazoles/farmacología
20.
JCI Insight ; 3(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385717

RESUMEN

Glioblastoma (GBM) remains uniformly lethal, and despite a large accumulation of immune cells in the microenvironment, there is limited antitumor immune response. To overcome these challenges, a comprehensive understanding of GBM systemic immune response during disease progression is required. Here, we integrated multiparameter flow cytometry and mass cytometry TOF (CyTOF) analysis of patient blood to determine changes in the immune system among tumor types and over disease progression. Utilizing flow cytometry analysis in a cohort of 259 patients ranging from benign to malignant primary and metastatic brain tumors, we found that GBM patients had a significant elevation in myeloid-derived suppressor cells (MDSCs) in peripheral blood but not immunosuppressive Tregs. In GBM patient tissue, we found that increased MDSC levels in recurrent GBM portended poor prognosis. CyTOF analysis of peripheral blood from newly diagnosed GBM patients revealed that reduced MDSCs over time were accompanied by a concomitant increase in DCs. GBM patients with extended survival also had reduced MDSCs, similar to the levels of low-grade glioma (LGG) patients. Our findings provide a rationale for developing strategies to target MDSCs, which are elevated in GBM patients and predict poor prognosis.


Asunto(s)
Neoplasias Encefálicas/inmunología , Línea Celular/inmunología , Glioblastoma/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Línea Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Citometría de Flujo/métodos , Glioblastoma/patología , Humanos , Estudios Longitudinales , Masculino , Células Supresoras de Origen Mieloide/efectos de los fármacos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA